首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5722篇
  免费   492篇
  国内免费   540篇
  2023年   137篇
  2022年   121篇
  2021年   177篇
  2020年   198篇
  2019年   216篇
  2018年   211篇
  2017年   186篇
  2016年   185篇
  2015年   211篇
  2014年   271篇
  2013年   465篇
  2012年   256篇
  2011年   291篇
  2010年   217篇
  2009年   285篇
  2008年   287篇
  2007年   279篇
  2006年   304篇
  2005年   281篇
  2004年   253篇
  2003年   233篇
  2002年   196篇
  2001年   186篇
  2000年   146篇
  1999年   126篇
  1998年   111篇
  1997年   97篇
  1996年   77篇
  1995年   63篇
  1994年   81篇
  1993年   52篇
  1992年   68篇
  1991年   43篇
  1990年   42篇
  1989年   39篇
  1988年   36篇
  1987年   25篇
  1986年   18篇
  1985年   40篇
  1984年   36篇
  1983年   23篇
  1982年   39篇
  1981年   30篇
  1980年   18篇
  1979年   22篇
  1978年   14篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
  1973年   12篇
排序方式: 共有6754条查询结果,搜索用时 93 毫秒
41.
42.
Plants resist infection through an innate immune response, which is usually associated with slowing of growth. The molecular mechanisms underlying the trade-off between plant growth and defense remain unclear. The present study reveals that growth/defense trade-offs mediated by gibberellin (GA) and salicylic acid (SA) signaling pathways are uncoupled during constitutive overexpression of transgenic AtRAN1 and AtRAN1Q72L (active, GTP-locked form) Arabidopsis plants. It is well known that the small GTP-binding protein Ran (a Ras-related nuclear protein) functions in the nucleus–cytoplasmic transport of proteins. Although there is considerable evidence indicating that nuclear–cytoplasmic partitioning of specific proteins can participate in hormone signaling, the role of Ran-dependent nuclear transport in hormone signaling is not yet fully understood. In this report, we used a combination of genetic and molecular methods to reveal whether AtRAN1 is involved in both GA and SA signaling pathways. Constitutively overexpressed AtRAN1 promoted both elongation growth and the disease resistance response, whereas overexpression of AtRAN1Q72L in the atran2atran3 double mutant background clearly inhibited elongation growth and the defense response. Furthermore, we found that AtRAN1 coordinated plant growth and defense by promoting the stability of the DELLA protein RGA in the nucleus and by modulating NPR1 nuclear localization. Interestingly, genetically modified rice (Oryza sativa) overexpressing AtRAN1 exhibited increased plant height and yield per plant. Altogether, the ability to achieve growth/defense trade-offs through AtRAN1 overexpression provides an approach to maximizing crop yield to meet rising global food demands.  相似文献   
43.
Studies with substrate analogues and the pH optimum indicated the involvement of carboxyl group in the active site of goat carboxypeptidase A. Chemical modification of the enzyme with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide methoI -p-toluene sulphonate, a carboxyl specific reagent, led to loss of both esterase and peptidase activities. Protection studies showed that this carboxyl group was in the active site and was protected by Βp-phenylpropionic acid and glycyl-L-tyrosine. Kinetic studies also confirmed the involvement of carboxylic group because the enzyme modification with water soluble carbodiimide was a two step reaction which excluded the possibility of tyrosine or lysine which are known to give a one step reaction with this reagent  相似文献   
44.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   
45.
46.
Benefits of group life depend in large part on whether animals remain cohesive, which often requires collective decisions about where and when to move. During a group movement, the leader may be considered as the individual occupying the vanguard position of the group progression, when its movement evokes following by other group members. In nondespotic societies, individuals with greater incentives to move frequently are leaders. During 15 months of observations (1,712 contact hours), we investigated two mantled howler monkey (Alouatta palliata) groups at La Flor de Catemaco (Los Tuxtlas, Mexico) to examine whether sex and female reproductive state influenced leadership likelihood in two contexts: movements toward feeding trees; movements associated with loud calls, a group-defense behavior used by males of this genus. Females led and occupied forward positions during group movements toward feeding trees more often than adult males. Adult females led these movements more frequently when they were gestating than when they were lactating or cycling. There were no differences between sexes in the leadership of group movements associated with loud calls. Leadership by gestating females is perhaps the result of their higher nutritional/energetic needs when compared with cycling females, and of their greater mobility when compared with lactating females carrying dependent offspring. Female leadership during movements toward feeding trees may be a mechanism to optimize access to food resources in mantled howler monkeys.  相似文献   
47.
Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.  相似文献   
48.
Superoxide dismutases (SODs) are crucial in scavenging reactive oxygen species (ROS); however, studies regarding SOD functions in insects under cold conditions are rare. In this paper, two novel Cu/Zn-SOD genes in the desert beetle Microdera punctipennis, an extracellular copper/zinc SOD (MpecCu/Zn-SOD) and an intracellular copper/zinc SOD (MpicCu/Zn-SOD), were identified and characterized. The results of quantitative real-time PCR showed that MpecCu/Zn-SOD expression was significantly up-regulated by 4 °C exposure for 0.5 h, but MpicCu/Zn-SOD was not. Superoxide anion radical (O2-) content in beetles under 4 °C exposure for 0.5 h showed an initial sharp increase and fluctuated during the cold treatment period, which was consistent with the relative mRNA level of MpecCu/Zn-SOD. The total SOD activity in the beetle was negatively correlated to the O2- content with a correlation coefficient of −0.437. An E. coli system was employed to study the function of each MpCu/Zn-SOD gene. The fusion proteins Trx-His-MpCu/Zn-SODs were over expressed in E. coli BL21 using pET32a vector, and identified by SDS-PAGE and Western blotting. The transformed bacteria BL21(pET32a-MpecCu/Zn-SOD) and BL21(pET32a-MpicCu/Zn-SOD) showed increased cold tolerance to −4 °C as well as increased SOD activity compared to the control BL21(pET32a). The relative conductivity and malondialdehyde content in the two MpCu/Zn-SODs transformed bacteria under −4 °C were significantly lower than the control BL21(pET32a). Furthermore, BL21(pET32a-MpecCu/Zn-SOD) had significantly higher SOD activity and cold tolerance than BL21(pET32a-MpicCu/Zn-SOD) under −4 °C treatment, and had lower conductivity than BL21(pET32a-MpicCu/Zn-SOD). In conclusion, low temperature led to the accumulation of O2- in M. punctipennis, which stimulated the expression of extracellular MpCu/Zn-SOD gene and the increase of total SOD activity. E. coli overexpressing Trx-His-MpCu/Zn-SODs increased resistance to cold treatment-induced oxidative stress. Our findings will be helpful in further study of Cu/Zn-SOD genes in insect cold-tolerance.  相似文献   
49.
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2–deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound ‘Heatin’, containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.  相似文献   
50.
《Free radical research》2013,47(1):829-836
The gene encoding modified human superoxide dismutax (h-SOD) with 153 amino acid residues was constructed by chemical synthesis using the phosphoramidite method. The gene was designed so as to use bacterial codons for expression in prokaryotes and to introduce several unique restriction sites for further mutagenesis by the cassette exchange method. The distance between Shine-Dalgarno sequence and initiation codon was adjusted to maximum expression by using synthesized oligonucleotide. In addition, Cys 6 of h-SOD was changed to Ala to improve instability of native h-SOD.

Synthesized structural gene of h-SOD was expressed in E. coli after induction of isopropyl β-D-thiogalactoside by inserting the gene into the expression vector pKK223–3 having tac promoter. The gene that has 10 base pairs between Shine-Dalgarno sequence and initiation codøn showed the most efficient expression. The gene produced three active SOD isomers as revealed by chromatofocusing.

The main isomer was purified to homogeneity and characterized. The h-SOD-Ala6 showed similar properties to those of native h-SOD with respect to molecular weight, subunit structure, absorption spectrum. but the modified SOD was more resistant to heat denaturation than was native h-SOD; half-denaturing temperature was shifted by 10°C. Thus. the exchange of Cys 6 to Ala of h-SOD increased a stability of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号